## The 4-Color Theorem: History and Implications

Can Computers Prove Theorems?
K. Prahlad Narasimhan

January 12, 2021
National Institute of Science Education and Research, HBNI, Bhubaneswar

## Outline

A History
Introduction
The Origin Story
Planar Graphs
Maps to Graphs
Properties

Key Ideas
Unavoidable Sets
Reducible Configurations
Four Colors Suffice
An End in Sight?
Aftermath

A History

## Coloring Blobland



## Coloring Blobland



Goal: Color its states so that no two neighboring states get the same color.

## Coloring Blobland



An obvious solution - color all the states with different colors.

## Coloring Blobland



Can we do better?

## Coloring Blobland



Can we do better? Yes!

Coloring Blobland


## Coloring Blobland



Can we do better?

## Coloring Blobland



Can we do better? Yes!

## Coloring Blobland



Consider the state with the most number of neighbors.

## Coloring Blobland



Color all of its neighbors with unique colors.

## Coloring Blobland



Two of the five neighbors of the dark-blue state are uncolored.

## Coloring Blobland



Use two of the unused colors to color them!

## Coloring Blobland



The light-yellow state has one uncolored neighbor...

## Coloring Blobland



Use one of the unused colors to color it!

## Coloring A Map

- Let $d(s)$ be the number of a neighbors a state $s$ has.


## Coloring A Map

- Let $d(s)$ be the number of a neighbors a state $s$ has.
- Let $\Delta(M)=\max _{s \in M} d(S)$.


## Coloring A Map

- Let $d(s)$ be the number of a neighbors a state $s$ has.
- Let $\Delta(M)=\max _{s \in M} d(s)$.
- Then, we can color the map with $\Delta(M)+1$-many colors.


## Coloring A Map

- Let $d(s)$ be the number of a neighbors a state $s$ has.
- Let $\Delta(M)=\max _{s \in M} d(s)$.
- Then, we can color the map with $\Delta(M)+1$-many colors.
- Can we do better?


## Once Upon a Time...

- In 1852 Francis Guthrie postulated that four colors are sufficient to color any map.


## Once Upon a Time...

- In 1852 Francis Guthrie postulated that four colors are sufficient to color any map.
- His brother, Frederick Guthrie, posed this question to Augustus De Morgan in late 1852.


## Once Upon a Time...

- In 1852 Francis Guthrie postulated that four colors are sufficient to color any map.
- His brother, Frederick Guthrie, posed this question to Augustus De Morgan in late 1852.
- De Morgan shared the problem to William Hamilton.



## The Search Continues...

The 4-Color Conjecture
Four colors sufficient to color any map.

## The Search Continues...

The 4-Color Conjecture
Four colors sufficient to color any map.

- In 1878, Arthur Cayley revived the search for the proof of this conjecture.


## The Search Continues...

The 4-Color Conjecture
Four colors sufficient to color any map.

- In 1878, Arthur Cayley revived the search for the proof of this conjecture.
- His student Alfred Kempe published a proof of the conjecture in Nature the following year.


## The Search Continues...

- In 1890 Percy Heawood proved that Kempe's proof was incorrect.


## The Search Continues...

- In 1890 Percy Heawood proved that Kempe's proof was incorrect.
- He salvaged enough of it and proved that five colors are sufficient to color any map.


## The Search Continues...

- In 1890 Percy Heawood proved that Kempe's proof was incorrect.
- He salvaged enough of it and proved that five colors are sufficient to color any map.
- We will prove that six colors suffice for any map coloring and sketch the proof of Heawood's five-color theorem.


## Questions?

Questions?

Planar Graphs

Maps to Graphs


Maps to Graphs


Maps to Graphs


Maps to Graphs


Maps to Graphs


Maps to Graphs


## Maps to Graphs



Graphs which can be constructed from maps are called planar.

## Maps to Graphs



Graphs which can be constructed from maps are called planar.

## Planar Graphs



Equivalently, graphs were the vertices are drawn on the plane and the edges do not cross are planar.

## Planar Graphs



Equivalently, graphs were the vertices are drawn on the plane and the edges do not cross are planar.*

## Planar Graphs



Equivalently, graphs were the vertices are drawn on the plane and the edges do not cross are planar.

Planar Graphs


## Planar Graphs



Equivalently, graphs were there is a drawing of the vertices and the edges such that they do not cross are planar.

## Planar Graphs



Equivalently, graphs were there is a drawing of the vertices and the edges such that they do not cross are planar.

## Planar Graphs



Not all graphs are planar!

## Planar Graphs



Planar graphs satisfy Euler's Formula.

## Planar Graphs

## A Useful Corrolary

Let $G$ be a planar graph. Then, $|E(G)| \leq 3|V(G)|-6$.

## Planar Graphs

## A Useful Corrolary

Let $G$ be a planar graph. Then, $|E(G)| \leq 3|V(G)|-6$.


## Planar Graphs

## A Useful Corrolary

Let $G$ be a planar graph. Then, $|E(G)| \leq 3|V(G)|-6$.

$\left|V\left(G_{1}\right)\right|=10$ and $\left|E\left(G_{1}\right)\right|=19 ;$

## Planar Graphs

## A Useful Corrolary

Let $G$ be a planar graph. Then, $|E(G)| \leq 3|V(G)|-6$.

$\left|V\left(G_{1}\right)\right|=10$ and $\left|E\left(G_{1}\right)\right|=19 ;\left|V\left(G_{2}\right)\right|=4$ and $\left|E\left(G_{2}\right)\right|=6$.

## Some Definitions



Let $d(v)$ be the number of vertices adjacent to $v \in V(G)$.

## Some Definitions



Let $d(v)$ be the number of vertices adjacent to $v \in V(G)$. Here, $d(v)=6$.

## Some Definitions



Let $\bar{\Delta}(G)=\frac{\sum_{v \in V(G)} d(v)}{|V(G)|}$, the average degree of the graph.

## Some Definitions



Let $\bar{\Delta}(G)=\frac{\sum_{v \in V(G)} d(v)}{|V(G)|}$, the average degree of the graph. Here, $\bar{\Delta}\left(G_{1}\right)=\frac{2 \times 19}{10}$ and $\bar{\Delta}\left(G_{2}\right)=\frac{2 \times 6}{4}$.

## An Observation

## Observation

Let $G$ be a graph. Then, $2|E(G)|=\sum_{v \in V(G)} d(v)$. Therefore,

$$
\bar{\Delta}(G)=\frac{2|E(G)|}{|V(G)|}
$$

## A Vertex of Small Degree

## A Vertex of Small Degree <br> Let $G$ be a planar graph. Then there exists $v \in V(G)$ such that $d(v) \leq 5$.

Proof:

## A Vertex of Small Degree

## A Vertex of Small Degree

Let $G$ be a planar graph. Then there exists $v \in V(G)$ such that $d(v) \leq 5$.

Proof:

$$
\bar{\Delta}(G)=\frac{2|E(G)|}{|V(G)|}
$$

## A Vertex of Small Degree

## A Vertex of Small Degree

Let $G$ be a planar graph. Then there exists $v \in V(G)$ such that $d(v) \leq 5$.

Proof:

$$
\bar{\Delta}(G)=\frac{2|E(G)|}{|V(G)|} \leq \frac{6|V(G)|-12}{|V(G)|}
$$

## A Vertex of Small Degree

## A Vertex of Small Degree

Let $G$ be a planar graph. Then there exists $v \in V(G)$ such that $d(v) \leq 5$.

Proof:

$$
\bar{\Delta}(G)=\frac{2|E(G)|}{|V(G)|} \leq \frac{6|V(G)|-12}{|V(G)|}<6
$$

## A Vertex of Small Degree

## A Vertex of Small Degree

Let $G$ be a planar graph. Then there exists $v \in V(G)$ such that $d(v) \leq 5$.

Proof:

$$
\bar{\Delta}(G)=\frac{2|E(G)|}{|V(G)|} \leq \frac{6|V(G)|-12}{|V(G)|}<6
$$

Since the average degree is strictly less than 6, there exists a vertex $v$ with $d(v) \leq 5$.

## Six Colors Suffice

## Six Colors Suffice

Any map can be colored with at most six colors.

Proof:

## Six Colors Suffice

## Six Colors Suffice

Any map can be colored with at most six colors.

Proof: Let $G$ be the "corresponding" graph. We prove this by induction on $|V(G)|$.

- Assume, for all $G^{\prime}$ with $\left|V\left(G^{\prime}\right)\right|=k$, our proposition is true.


## Six Colors Suffice

## Six Colors Suffice

Any map can be colored with at most six colors.

Proof: Let $G$ be the "corresponding" graph. We prove this by induction on $|V(G)|$.

- Assume, for all $G^{\prime}$ with $\left|V\left(G^{\prime}\right)\right|=k$, our proposition is true.
- Consider a planar graph $G$ with $|V(G)|=k+1$.


## Six Colors Suffice

## Six Colors Suffice

Any map can be colored with at most six colors.

Proof: Let $G$ be the "corresponding" graph. We prove this by induction on $|V(G)|$.

- Assume, for all $G^{\prime}$ with $\left|V\left(G^{\prime}\right)\right|=k$, our proposition is true.
- Consider a planar graph $G$ with $|V(G)|=k+1$.
- Remove the vertex $v$ with degree at most five and call the resulting graph $G^{\prime}$.


## Six Colors Suffice

## Six Colors Suffice

Any map can be colored with at most six colors.

Proof: Let $G$ be the "corresponding" graph. We prove this by induction on $|V(G)|$.

- Assume, for all $G^{\prime}$ with $\left|V\left(G^{\prime}\right)\right|=k$, our proposition is true.
- Consider a planar graph $G$ with $|V(G)|=k+1$.
- Remove the vertex $v$ with degree at most five and call the resulting graph $G^{\prime}$.
- G ${ }^{\prime}$ can be colored with six colors;


## Six Colors Suffice

## Six Colors Suffice

Any map can be colored with at most six colors.

Proof: Let $G$ be the "corresponding" graph. We prove this by induction on $|V(G)|$.

- Assume, for all $G^{\prime}$ with $\left|V\left(G^{\prime}\right)\right|=k$, our proposition is true.
- Consider a planar graph $G$ with $|V(G)|=k+1$.
- Remove the vertex $v$ with degree at most five and call the resulting graph $G^{\prime}$.
- $G^{\prime}$ can be colored with six colors; hence, $G$ with six colors.


## Questions?

Questions?

Key Ideas

## Back to Maps

## A Vertex of Small Degree

Let $G$ be a planar graph. Then there exists $v \in V(G)$ such that $d(v) \leq 5$.

## Back to Maps

## A Vertex of Small Degree <br> Let $G$ be a planar graph. Then there exists $v \in V(G)$ such that $d(v) \leq 5$.

## A State of Small Degree

Let $M$ be a map. Then there exists a state $s$ such that $d(s) \leq 5$.

## Unavoidable Sets

## A State of Small Degree

Let $M$ be a map. Then there exists a state $s$ such that $d(s) \leq 5$.

## Unavoidable Sets

## A State of Small Degree <br> Let $M$ be a map. Then there exists a state $s$ such that $d(s) \leq 5$.

- Thus, every map must contain at least one of a "monogon", "digon", "triangle", "square", or "pentagon".


## Unavoidable Sets

## A State of Small Degree <br> Let $M$ be a map. Then there exists a state $s$ such that $d(s) \leq 5$.

- Thus, every map must contain at least one of a "monogon", "digon", "triangle", "square", or "pentagon".
- This set is called an unavoidable set.


## Unavoidable Sets

## A State of Small Degree <br> Let $M$ be a map. Then there exists a state $s$ such that $d(s) \leq 5$.

- Thus, every map must contain at least one of a "monogon", "digon", "triangle", "square", or "pentagon".
- This set is called an unavoidable set.
- We care about them since we will encounter them in every map!


## Kempe's Unavoidable Set



## Paul Wernicke's Unavoidable Set



## More Unavoidable Sets

- In 1920, Philip Franklin produced an unavoidable set with nine configurations.


## More Unavoidable Sets

- In 1920, Philip Franklin produced an unavoidable set with nine configurations.
- In 1940, Henri Lebesgue constructed several interesting unavoidable sets.


## More Unavoidable Sets

- In 1920, Philip Franklin produced an unavoidable set with nine configurations.
- In 1940, Henri Lebesgue constructed several interesting unavoidable sets.
- By the 1960s, unavoidable sets with thousands of configurations were produced.


## Minimal Criminals

- Assume that the four-color theorem is false.


## Minimal Criminals

- Assume that the four-color theorem is false.
- There exists a map which requires at least five colors to color.


## Minimal Criminals

- Assume that the four-color theorem is false.
- There exists a map which requires at least five colors to color.
- Such a map with the least number of states (say $k$ ) is called a minimal criminal of the problem.


## Minimal Criminals

- Assume that the four-color theorem is false.
- There exists a map which requires at least five colors to color.
- Such a map with the least number of states (say $k$ ) is called a minimal criminal of the problem.
- Every map with at most $k-1$-many vertices is four-colorable!


## Monogon?



Can a monogon appear in a minimal criminal?

## Monogon?



Can a monogon appear in a minimal criminal? No!

## Digon?



Can a digon appear in a minimal criminal?

## Digon?



Can a digon appear in a minimal criminal? No!

## Triangle?



Can a triangle appear in a minimal criminal?

## Triangle?



Can a triangle appear in a minimal criminal? No!

## Reducible Configurations

- Monogons, digons, and triangles cannot appear in a minimal criminal.


## Reducible Configurations

- Monogons, digons, and triangles cannot appear in a minimal criminal.
- Kempe also proved that squares cannot appear in a minimal criminal.


## Reducible Configurations

- Monogons, digons, and triangles cannot appear in a minimal criminal.
- Kempe also proved that squares cannot appear in a minimal criminal.
- Such a state (or arrangement of states) is called a reducible configuration.


## Reducible Configurations

- Monogons, digons, and triangles cannot appear in a minimal criminal.
- Kempe also proved that squares cannot appear in a minimal criminal.
- Such a state (or arrangement of states) is called a reducible configuration.
- Are there more reducible configurations?


## Reducible Configurations

- Monogons, digons, and triangles cannot appear in a minimal criminal.
- Kempe also proved that squares cannot appear in a minimal criminal.
- Such a state (or arrangement of states) is called a reducible configuration.
- Are there more reducible configurations? Yes!


## Reducible Configurations

- In 1913, David Birkhoff developed a systematic method to construct reducible configurations.


## Reducible Configurations

- In 1913, David Birkhoff developed a systematic method to construct reducible configurations.
- In 1920, Philip Franklin used his ideas to prove that all maps with at most 24 states is four-colorable.


## Reducible Configurations

- In 1913, David Birkhoff developed a systematic method to construct reducible configurations.
- In 1920, Philip Franklin used his ideas to prove that all maps with at most 24 states is four-colorable.
- In 1938, he increased this to 35 states.


## Merging Concepts

## Unavoidable Set

A set of configurations is unavoidable if every map contains at least one configuration from this set.

## Reducible Configuration

A configuration is called reducible if it cannot appear in a minimal criminal.

## Merging Concepts

## Unavoidable Set

A set of configurations is unavoidable if every map contains at least one configuration from this set.

## Reducible Configuration

A configuration is called reducible if it cannot appear in a minimal criminal.

- What if we can construct an unavoidable set of reducible configurations?


## Merging Concepts

## Unavoidable Set

A set of configurations is unavoidable if every map contains at least one configuration from this set.

## Reducible Configuration

A configuration is called reducible if it cannot appear in a minimal criminal.

- What if we can construct an unavoidable set of reducible configurations?
- Then every map must contain a reducible configuration...


## Merging Concepts

## Unavoidable Set

A set of configurations is unavoidable if every map contains at least one configuration from this set.

## Reducible Configuration

A configuration is called reducible if it cannot appear in a minimal criminal.

- What if we can construct an unavoidable set of reducible configurations?
- Then every map must contain a reducible configuration...
- Thus, the 4-Color Theorem will be proved!


## Questions?

Questions?

Four Colors Suffice

## The Search Begins

- A search for unavoidable set of reducible configurations was advocated by Heinrich Heesch in the late 1940s.


## The Search Begins

- A search for unavoidable set of reducible configurations was advocated by Heinrich Heesch in the late 1940s.
- His hunch was that these configurations would be small but the size of the set would be in the very large.


## The Search Begins

- A search for unavoidable set of reducible configurations was advocated by Heinrich Heesch in the late 1940s.
- His hunch was that these configurations would be small but the size of the set would be in the very large.
- Wolfgang Haken was an attendee of this lecture.


## The Search Begins

- A search for unavoidable set of reducible configurations was advocated by Heinrich Heesch in the late 1940s.
- His hunch was that these configurations would be small but the size of the set would be in the very large.
- Wolfgang Haken was an attendee of this lecture.
- Two decades and a wealth of experience later, he returned to this problem.


## The Search Begins

- A search for unavoidable set of reducible configurations was advocated by Heinrich Heesch in the late 1940s.
- His hunch was that these configurations would be small but the size of the set would be in the very large.
- Wolfgang Haken was an attendee of this lecture.
- Two decades and a wealth of experience later, he returned to this problem.
- He reached out to Heesch and invited him to Illinois.


## The Computers Arrive

- Heesch had discovered thousands of reducible configurations.


## The Computers Arrive

- Heesch had discovered thousands of reducible configurations.
- With the help of Karl Dürre and a CDC 1604A, he started checking large configurations for reducibility.


## The Computers Arrive

- Heesch had discovered thousands of reducible configurations.
- With the help of Karl Dürre and a CDC 1604A, he started checking large configurations for reducibility.
- Worked on a CDC 6600 with Yoshio Shimamoto the following two years.


## The Computers Arrive

- Heesch had discovered thousands of reducible configurations.
- With the help of Karl Dürre and a CDC 1604A, he started checking large configurations for reducibility.
- Worked on a CDC 6600 with Yoshio Shimamoto the following two years.
- In late 1971, Shimamoto proved that if a particular configuration were reducible, then the four-color problem was solved!


## The Computers Take Over

- Karl's program showed that the configuration was not reducible, halting progress again.


## The Computers Take Over

- Karl's program showed that the configuration was not reducible, halting progress again.
- Haken put the problem away for a few years since he was not an expert on computers.


## The Computers Take Over

- Karl's program showed that the configuration was not reducible, halting progress again.
- Haken put the problem away for a few years since he was not an expert on computers.
- Kenneth Appel, was an attendee in this lecture.


## The Computers Take Over

- Karl's program showed that the configuration was not reducible, halting progress again.
- Haken put the problem away for a few years since he was not an expert on computers.
- Kenneth Appel, was an attendee in this lecture.

[^0]
## The Computers Take Over

- Appel and Haken were able to prove that there exists an unavoidable set which uses only "good" configurations in 1974.


## The Computers Take Over

- Appel and Haken were able to prove that there exists an unavoidable set which uses only "good" configurations in 1974.
- To help with checking reducibility, they roped in John Koch, a graduate student.


## The Computers Take Over

- Appel and Haken were able to prove that there exists an unavoidable set which uses only "good" configurations in 1974.
- To help with checking reducibility, they roped in John Koch, a graduate student.
- By 1976, they had used 487 rules to construct the unavoidable set.


## The Computers Take Over

- Appel and Haken were able to prove that there exists an unavoidable set which uses only "good" configurations in 1974.
- To help with checking reducibility, they roped in John Koch, a graduate student.
- By 1976, they had used 487 rules to construct the unavoidable set.
- With the help of Haken's daughter Dorothea, they checked, by hand, the 2000 odd configurations for reducibility.


## Success!

## A Quote

Modulo careful checking, it appears that four colors suffice!

## Success!

- After a month rewriting the pre-print, they announced their result on June 21, 1976.


## Success!

- After a month rewriting the pre-print, they announced their result on June 21, 1976.
- A long, arduous peer-review process later...


## Success!

- After a month rewriting the pre-print, they announced their result on June 21, 1976.
- A long, arduous peer-review process later...
- The final version of the paper was published in December, 1977.


## Success!

## EVERY PLANAR MAP IS FOUR COLORABLE <br> PART I: DISCHARGING

## K. Appll and W. Haken

## 1. Introduction

We begin by describing, in chronological order, the earlier results which led to the work of this paper. The proof of the Four Color Theorem requires the results of Sections 2 and 3 of this paper and the reducibility results of Part If Sections 4 and 5 will be devoted to an attempt to explain the difficulties of the Four Color Problem and the unusual nature of the proof.
A. B. Kempe [19] in 1879 . Kempe proved that the problen can be restricted A. B. Kempe [19] in 1879. Kempe proved that the problem can be restricted
to the consideration of "normal planar maps" in which all faces are simply connected polygons, precisely three of which meet at each node. For such maps, he derived from Euler's formula, the equation
(1.1) $\quad 4 p_{1}+3 p_{s}+2 p_{4}+p_{s}={ }^{1} \sum_{i=7}^{*}(k-6) p_{k}+12$

Where $p$, is the number of polygons with precisely $i$ neighbors and $k_{\text {man }}$ is the largest value of $i$ which occurs in the map. This equation immediately implies that every normal planar map contains polygons with fewer than six neighbors.
In order to prove the Four Color Theorem by induction on the number $p$ of polygons in the map ( $p=\Sigma p$ ), Kempe assumed that every normal planar map with $p \leq r$ is four colorable and considered a normal planar map $M_{r+1}$ with $r+1$ polygons. He distinguished the four cases that $M_{r+1}$ contained a polygon $P_{2}$ with two neighbors, or a triangle $P_{3}$, or a quadrilateral $P_{4}$, or a pentagon $P_{3}$ : at least one of these cases must apply by (1.1). In each case be Reselved July 23, 1976.
${ }^{1}$ The nuthers wish to express their gratiude to the Reseuch Board of the University of Hilinois for the gneerous allowanke ef compater time for the work on the dibscharging alpoptithm. They also wish to thank the Compoter Senvics Organization of the Universiy of illinois and
 and dagyarss in the manuscript.
Haken abs wistes to tlank the
Haken also wiskes to thank the Conter for Adranced Study of the University of Ninois for
support for the year 1974 -75 and the National Science Foundation for support for half of the
 Karl-Heimich and weise al the Universily of Kiel, for introoducing him to mathematics and in
Kater parricular to the Four Color Probkem,
Appel wishes to thank his teacher, mathematics.

EVERY PLANAR MAP IS FOUR COLORABLE

## ${ }_{\text {HY }}$

K. Appll, W. Haken, and J. Koch

## 1. Introduction

In Part I of this paper, a discharging prooedure is defined which yields the navoidability (in planar triangulations) of a set $\overline{\%} \%$ of configurations of ring size fourteen or less. In this part, it is presented (as Table ${ }^{2}$ consisting of Figures $1-63$ ) together with a discussion of the reducibility proofs of its members.
When the term reducible is used above it is used in the following formal When the term reducible is used above it is used in the following formal
sense. Every configuration in $\%$ has the property that it is not only C- or D . reducible in the sense of [16], [27] (references are to the bibliography of Part I), but also if it is arbitrarily immersed in a planar map (i.e, not necessarily "properly embedded") then that planar map cannot be a minimal five chromatic map. A rather detailed study of such "immersion reducibility" is included in this paper.
Every configuration in $\%$ of ring size eleven or greater has been checked by our computer programs, with one exception. ${ }^{2}$ For the reducibility of conhave been first to reduce all of these configurations. In particular we understand that F. Allaire has made a complete list of reducible eleven-rings and that H. Heesch has a large list of reducible configurations which has not been published. Furthermore, since we did not apply splicing arguments, there are Creducible configurations, some of which appear in [25] and [1], For which we
were not able to find reducers. But, since it meant only a small enlargement of our set $\%$ we preferred to include in $\%$ only such configarations as we could verify with our programs. ${ }^{2}$ (See the note at the bottom of page 490.)

[^1]
## Is it a Proof?

- The response was, at best, muted.


## Is it a Proof?

- The response was, at best, muted.
- There were two groups: those who did not believe that the thousands of cases solved by the computer was error-free...


## Is it a Proof?

- The response was, at best, muted.
- There were two groups: those who did not believe that the thousands of cases solved by the computer was error-free...
- And those who were unconvinced that the 700 pages of hand calculations was error-free!


## What is a Proof Today?

## A Quote

...it seems that the computer-assisted work of Appel, Haken and Koch on the well-known Four-Color Problem may represent a watershed in the history of mathematics. Their work has been remarkably successful in forcing us to ask: What is a Proof Today?

## Thomas Tymoczko's Paper

THE JOURNAL OF PHILOSOPHY
volume lxxvi, no. 2, februaky 9979


THE FOUR.COLOR PROBLEM AND ITS PHHLOSOPHICAL SIGNIFICANCE*
HE old four-color problem was a problen of mathematics for over a century, Mathematicians appear to have solved
it to their satisfaction, but their solution raises a problem for philosophy which we might call the new four-color problem. The old four-color problem was whether every map on the plane or sphere can be colored with no more than four colors in such a way that neighboting regions are never colored alike This problem is so simple to state that even a child can understand it. Nevertheless, the four-color problem resisted attempts by mathematicians for more than one hundred years. From very early on it was proved that five colors suffice to color a map, but no map was ever lound thought that four colors were not sufficient and were working on mathods to produce a counterexample when Kenneth Appel and Wolfgang Haken, assisted by John Koch, published a proof that four colors sufice.t Their proof has been accepted by most mathematicians, and the old four-color problem has given way in mathematics to the new four color theorem (4CT).

The purpose of thesc remarks is to raise the question of whether the 4 CT is realy a theorem. This investigation should be purely definitively solved. It is not my aim to interfere with the rights of


 Hikrns part II, on Reducizili ly, was donc in conjuation with Koch. Pare



57

[^2]
## Thomas Tymoczko's Paper

THE JOURNAL OF PHILOSOPHY
volume lxxvi, no. 2, februaky 1979


THE FOUR.COLOR PROBLEM AND ITS PHILOSOPHICAL SIGNIFICANCE*

Hfor over a color problem was a problen of mathermatics for over a century, Mathematicians appear to have solved
it to their satisfaction, but their solution raises a problem for philosophy which we might call the new four-color problem. The old four-color problem was whether every map on the plane or sphere can be colored with no more than four colors in such a way that neighboring regions are never coloned alike. This problem is so simple to state that even a child can understand it. Nevertheless, the four-color problem resisted attempts by mathematicians for more than one hundred years. From very early on it was proved that required more than four colots. In fact some mathernaticians thought that four colors were not sufficient and were working on methods to produce a counterecample when Kenneth Appel and Wolfgang Haken, assisted by John Koch, published a proof that four Woligang Haken, assisted by John Koch, published a proof that four
colors suffice.t Their proof has been accepted by most mathematicians, and the old four-color problem has given way in mathematics to the new four-color theorem (4CT).
The purpose of thesc remarks is to raise the question of whether the 4CT is realy a theorem. This invesigation should be purely philosophical, since the mathematical question can be regarded as definitively solved. It is not my aim to interfere with the rights of
 Marsh for rexding
number of poins.


 thatixal page refietences to Appel, Haken, and Koch, will be to dhiz arikicle


57

[^3]
# What is a Proof? <br> A valid proof must be convincing and surveyable. 

## Concerns

- No qualms about the construction of the unavoidable set.


## Concerns

- No qualms about the construction of the unavoidable set.
- Would mathematics become an empirical science?


## Concerns

- No qualms about the construction of the unavoidable set.
- Would mathematics become an empirical science?
- Can a proof be considered valid if it cannot be checked by hand?


## Quotes

## Ted Swart

For the most part I regard computer-assisted proof as just an extension of pencil and paper. I don't think there's some great divide which says that OK, you're allowed to use pencil and paper but you're not allowed to use a computer because that changes the character of the proof. I don't see that myself. I find such an argument strange.

## Quotes

## Ted Swart

For the most part I regard computer-assisted proof as just an extension of pencil and paper. I don't think there's some great divide which says that OK, you're allowed to use pencil and paper but you're not allowed to use a computer because that changes the character of the proof. I don't see that myself. I find such an argument strange.

## Ted Swart

Human beings get tired, and their attention wanders, and they are all too prone to slips of various kinds... Computers do not get tired.

## Quotes

## Ian Stewart

The answer appears as a kind of monstrous coincidence. Why is there an unavoidable set of reducible configurations? The best answer at the present time is: there just is. The proof: here it is, see for yourself. The mathematician's search for hidden structure, his pattern-binding urge, is frustrated.

## Quotes

## Ian Stewart

The answer appears as a kind of monstrous coincidence. Why is there an unavoidable set of reducible configurations? The best answer at the present time is: there just is. The proof: here it is, see for yourself. The mathematician's search for hidden structure, his pattern-binding urge, is frustrated.

## Daniel Cohen

... the real thrill of mathematics is to show that as a feat of pure reasoning it can be understood why four colors suffice. Admitting the computer shenanigans of Appel and Haken to the ranks of mathematics would only leave us intellectually unfulfilled.

## Quotes

## Kenneth Appel

... there were people who said, "This is terrible mathematics, because mathematics should be clean and elegant", and I would agree. It would be nicer to have clean and elegant proofs.

## Improvements

- In 1989, Haken and Appel corrected all errors and published their last word on the subject through a book.


## Improvements

- In 1989, Haken and Appel corrected all errors and published their last word on the subject through a book.
- In 1994, Robertson et al. published a proof of the theorem using a smaller unavoidable set using a a tenth of the rules. Their algorithm also ran much quicker.


## Improvements

- In 1989, Haken and Appel corrected all errors and published their last word on the subject through a book.
- In 1994, Robertson et al. published a proof of the theorem using a smaller unavoidable set using a a tenth of the rules. Their algorithm also ran much quicker.
- In 2004, Georges Gonthier used a "proof checker" to verify that the proof of the four-color theorem was valid!


## Food For Thought

-Why should proofs be elegant?

## Food For Thought

-Why should proofs be elegant?

- What differentiates arduous hand-written proofs and computer-aided proofs?


## Food For Thought

-Why should proofs be elegant?

- What differentiates arduous hand-written proofs and computer-aided proofs?
- Assume that "maps" are now three-dimensional. Can all such maps be colored using 4-colors?


## Food For Thought

-Why should proofs be elegant?

- What differentiates arduous hand-written proofs and computer-aided proofs?
- Assume that "maps" are now three-dimensional. Can all such maps be colored using 4-colors?
- What if maps are embedded in different spaces? A torus? Other surfaces with higher genus?


## Questions?

Please feel free to send me a mail ${ }^{1}$ if you have any questions regarding this talk or just want to discuss the topic!

## Thank you for your time!

Thanks to Chi-Ning for the opportunity!
${ }^{1}$ The ID is kprahlad.narasimhan@niser.ac.in just in case the link is broken.

## References

For the general audience:

- Blog by Jesus Najera. Basics and history.
- Slides by Robin Wilson. Basics and history.
- Book by Robin Wilson. A comprehensive account of the history of the four-color theorem.
- From the Horse's Mouth. A Scientific American article by Appel and Haken.


## References

For those who are mathematically inclined (I):

- Lecture Notes by Moti Ben-Ari. Some basics and the proof of the five-color theorem.
- The Final Word. Every Planar Map is Four Colorable, Kenneth Appell and Wolfgang Haken, Contemporary Mathematics, 1989.
- An Improved Proof. A New Proof Of The Four-Colour Theorem, Robertson et al., Announcements of the American Mathematical Society, 1996.


## References

For those who are mathematically inclined (II):

- A Final Check. A computer-checked proof of the Four Colour Theorem by Georges Gonthier.
- The Holy Graph Theory Book. Graph Theory, Reinhard Diestel, Graduate Texts in Mathematics, 2000. Chapter 4 contains details on planar graphs. Chapter 5 contains details on coloring.


## References

For those interested in the philosophical implications:

- What is a Proof? The Four-Color Problem and Its Philosophical Significance, Thomas Tymoczko, The Journal of Philosophy, 1979.
- A Rebuttal. Swart's response to Tymoczko's paper in support of the proof.
- Are Proofs Dying? Mathematicians and computer scientists weigh on whether computers will replace mathematicians.


[^0]:    A Quote
    I don't know of anything involving computers that can't be done; some things just take longer than others. Why don't we take a shot at it?

[^1]:    
    We sheuld like to express our appreciation to the Research Beard of the University of
    
     computer of the University Adminsitrative Data Procesing Unit. We should like to especialy hank the consad tants and sytems programmers at C.S.O. for their excellent belp and advice and the eperations staff for their superb cooperation. We should also tike to tunk Laurel,
    Pvere, and Andrew Appel for carefil chacking of diagrams and verifing the eesurnence of coafigurations in the ressils of the discharging procodire.
    In partikule, we want to thank Michael Roolle, Charles Mils, and Willium Millt foe pointing In particular, we want to thank Michael Rolle, Charles
    out copying errors in the earfier prevrints of this puper.
    ${ }^{\text {2 }}$ Thtere is one major exseption to our policy of relucing all requirect configurations of ring
     491

[^2]:    
    

[^3]:    $103.100 .128 .30 \mathrm{oan} \mathrm{Nec} 10 \mathrm{Jan} 202209.66 .43 \mathrm{~T} / \mathrm{TC}$
    

